Overexpression of Mitochondrial Uncoupling Protein 2 Inhibits Inflammatory Cytokines and Activates Cell Survival Factors after Cerebral Ischemia

نویسندگان

  • Bryan Haines
  • P. Andy Li
چکیده

Mitochondria play a critical role in cell survival and death after cerebral ischemia. Uncoupling proteins (UCPs) are inner mitochondrial membrane proteins that disperse the mitochondrial proton gradient by translocating H(+) across the inner membrane in order to stabilize the inner mitochondrial membrane potential (ΔΨ(m)) and reduce the formation of reactive oxygen species. Previous studies have demonstrated that mice transgenically overexpressing UCP2 (UCP2 Tg) in the brain are protected from cerebral ischemia, traumatic brain injury and epileptic challenges. This study seeks to clarify the mechanisms responsible for neuroprotection after transient focal ischemia. Our hypothesis is that UCP2 is neuroprotective by suppressing innate inflammation and regulating cell cycle mediators. PCR gene arrays and protein arrays were used to determine mechanisms of damage and protection after transient focal ischemia. Our results showed that ischemia increased the expression of inflammatory genes and suppressed the expression of anti-apoptotic and cell cycle genes. Overexpression of UCP2 blunted the ischemia-induced increase in IL-6 and decrease in Bcl2. Further, UCP2 increased the expression of cell cycle genes and protein levels of phospho-AKT, PKC and MEK after ischemia. It is concluded that the neuroprotective effects of UCP2 against ischemic brain injury are associated with inhibition of pro-inflammatory cytokines and activation of cell survival factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms

Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestati...

متن کامل

Protective Effects of Nucleobinding-2 After Cerebral Ischemia Via ‎Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein ‎Expression

Introduction: Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemia-reperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to i...

متن کامل

Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content.

Mast cells are immune effector cells that are involved in allergies and inflammation through the release of mediators such as histamine, PGs, and cytokines. Uncoupling protein 2 (UCP2) is a mitochondrial protein that inhibits insulin secretion from beta cells, possibly through down-regulation of reactive oxygen species production. We hypothesized that UCP2 could also regulate mast cell activati...

متن کامل

P34: Berberin Exerts Neuroprotective Effects by Modulating Pro and Anti-Inflammatory Cytokines in Rat Model of MCAO

Many complicated mechanisms are involved in brain ischemia and the role of inflammatory factors in the progression of post-ischemic injury is inevitable. In present study, anti-inflammatory effect of berberine has been investigated in reperfusion injury after acute ischemic stroke. Male Wistar rats weighing 250-270 gr were randomly divided into four cohorts: healthy rats (control, n=20), sham-o...

متن کامل

Chromon-3-aldehyde derivatives restore mitochondrial function in rat cerebral ischemia

Objective(s): This work aimed to assess the effect of 10 new chromon-3-aldehyde derivatives on changes of mitochondrial function under the conditions of brain ischemia in rats. Materials and Methods: The work was executed on BALB/c male-mice (acute toxicity was evaluated) and male Wistar rats, which were used to model cerebral ischemia b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012